Главная » Кейсы » Контекстная реклама » Магазин Hoff увеличил конверсию с рекламы садовой мебели на 21%, применив данные о погоде.

Магазин Hoff увеличил конверсию с рекламы садовой мебели на 21%, применив данные о погоде.

Сервис: Alytics
Отзывов: 3
Кейсов: 3
Читать обзор про «Alytics»

Представители мебельного гипермаркета Hoff предположили, что существует зависимость между заказами продуктов с контекстной рекламы и погодными условиями, после чего провели эксперимент с регулированием ставок в «Яндекс.Директе» и Google Adwords на основе температуры воздуха, облачности и осадков. Это позволило компании увеличить продажи товаров категории на 64%, а конверсию в покупку — на 21% при росте расходов на 18,5%.
 
С первым потеплением в марте-апреле начинается сезон продаж садовой мебели, а уже в июле товар уходит на распродажу. У нас получилось найти необычное решение продвижения этой категории в контекстной рекламе.
 
Еще в 2013 году в летний сезон мы предположили, что продажи садовой мебели зависят от погоды. Однако в тот момент под рукой не было инструмента, который позволил бы автоматизировать управление контекстной рекламой в зависимости от погодных условий.
 
В 2014 году по итогам летних продаж мы провели повторный анализ, который подтвердил гипотезу и показал явную зависимость между дневной температурой воздуха и заказами с контекстной рекламы: чем выше температура, тем больше продаж.
 
*Зависимость между дневной температурой воздуха и заказами с контекстной рекламы
 
К летнему сезону 2015 года мы решили подготовиться заранее: вместе с нашим партнером Alytics разработали автоматические правила, которые регулируют ставки в контекстной рекламе в зависимости от прогноза погоды по трем условиям:
 
- дневная температура текущего дня;
- тип осадков;
- уровень осадков.
 
В качестве поставщика данных о прогнозе в наших целевых регионах мы выбрали Gismeteo. 
 
Как это работает
 
Рассмотрим механику: система автоматизации контекстной рекламы Alytics каждый день в 4 утра получает выгрузку от Gismeteo по API c прогнозом погоды на текущие сутки. Для принятия решения за основу берется дневная температура в градусах по Цельсию в зависимости от региона и отсутствие осадков. Поскольку лето 2015 года выдалось дождливым и холодным, в середине отчетного периода правила пришлось скорректировать в сторону допущения небольших осадков (мелкий дождь).
 
Температура в 2015 году была в среднем ниже, чем год назад:
 
*Сравнение средних температур в 2014 и 2015 годах (по данным сводных отчетов Gismeteo).
 
*Сравнение осадков в 2014 и 2015 годах (по данным сводных отчетов Gismeteo).
 
Правила работы со ставками мы сформировали следующим образом:
 
Исходная ставка увеличивается на 100%, если:
 
- дневная температура воздуха больше порогового значения;
- нет осадков или мелкий дождь;
- нет облаков или малооблачно.
 
Исходная ставка увеличивается на 50%, если:
 
- дневная температура воздуха больше порогового значения;
- есть осадки — дождь;
- облачно.
 
Исходная ставка остается без применения коэффициента, если:
 
- дневная температура воздуха меньше порогового значения;
- осадки — сильный дождь;
- пасмурно.
 
В остальных случаях, которые не затронуты ни одним из правил, ставки не изменяются. Визуальная схема автоматизации ставок:
 
*Схема автоматизации ставок от прогноза погоды
 
Результаты
 
- Рост конверсии в покупку с рекламных кампаний «Садовая мебель» на 21%.
- Рост дохода по данной категории за отчетный период на 64%.
- Рост расхода по рекламным кампаниям «Садовая мебель» на 18,5%.
 
 *Сравнение расходов и доходов
 
Руководитель отдела интернет-маркетинга компании Татьяна Панина сообщила о намерении продолжать подобные эксперименты.
 
Закрыть

Нажмите «Подписаться», чтобы

не пропустить новые обзоры сервисов для бизнеса


Спасибо! Я уже подписан